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SUMMARY 
A procedure for the calculation of the starting flow around a sphere in a uniform stream is presented. The 
flow field is simulated by a flow of ideal fluid with embedded vorticity. With the assumption that the flow 
remains symmetric, the vorticity field is approximated by a number of discrete circular line vortices. The 
image vortices to satisfy the boundary condition for the normal component of velocity on the surface of 
the sphere are determined by Butler’s sphere theorem. The Stokes streamfunction is used for the field 
description. The motion of vortices is tracked by the vortex-in-cell method, the cells being formed by square 
grids. 
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1. INTRODUCTION 

There are many engineering problems involving the flow of a fluid past a body which in the past 
have been impossible to treat by the solution of the Navier-Stokes equations, largely owing to 
limitations on computing resources. Even with today’s supercomputers, this is still the case with 
some problems and, at least in the immediate future, will remain so. Alternative strategies have, of 
necessity, evolved and one of these is to model the problem by the use of singularities embedded in 
a potential flow field. Examples of the success of this strategy may readily be found in the surface 
vorticity methods developed in the fields of aerofoil and propellor theory. Of course, this 
approach also has its limitations. By its very nature it is unable to predict frictional drag, and the 
models have no Reynolds number dependence. However, if not pushed beyond their limitations, 
models based on this approach can produce results in very good agreement with those obtained 
experimentally. An early notable example is the prediction of the lift force on an aerofoil. 

More recently, two-dimensional incompressible separated flows about bluff bodies at high 
Reynolds numbers have been treated on a similar basis. In this case the flow is time-dependent 
and vorticity is continuously fed into the wake. In early models of this nature, based on the 
discrete vortex method and developed from the 1960s onwards, the Reynolds number was not 
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defined explicitly but was assumed to be high enough for the viscous effects to be negligible other 
than in the original generation of vorticity at the surface of the body. The impetus for these 
models arose from the observation that interacting shear layers computed by Abernathy and 
Kronauer,' for example, closely resembled the physical flows found in the wake of bluff bodies.' 
The most encouraging aspects of the early models were qualitative rather than quantitative. 
However, they evolved into the powerful methods in use today. In contemporary models the 
vorticity transport equation is solved in its entirety using hybrid techniques in which the 
convection part is solved by the discrete vortex method and the viscous diffusion by random 
walks or difference schemes. Comprehensive reviews of these methods have been published by 
M a d 3  and S a r ~ k a y a . ~  Suffice it to say that convincing results have been obtained for a number 
of varied and difficult time-dependent flows using these methods. 

The success achieved with two-dimensional models has inevitably led to an interest in their 
extension to three dimensions. Leonard,s for instance, has investigated the flow about a sphere 
using closed vortex filaments. Kamemoto et d6 have modelled the axisymmetric flow obtained 
with a circular disc with a concentric hole in it and subjected to a uniform stream, by using vortex 
rings. The present study was inspired by similar considerations and is viewed as a preliminary 
stage in a long-term project ultimately aimed at achieving a model for three-dimensional flow 
about an arbitrary body. 

The study is concerned with modelling axisymmetric separated flow about a sphere. As with 
the discrete vortex method, the Reynolds number is not explicitly defined and, similarly, the 
model is appropriate to high-Reynolds-number regimes. Its most obvious application is to the 
starting flow about a sphere in a uniform stream. However, it is envisaged that it might also be 
appropriate to the near wake of more fully developed flows. Various experiments have been 
carried out on the flow about spheres and they all show that at high Reynolds numbers, after an 
initial starting flow, the wake becomes unstable and loses all semblance of symmetry. There is a 
certain amount of disagreement about the Reynolds number range at which this happens. It is 
no doubt highly sensitive to the exact conditions under which the experiment is carried out, 
and affected, amongst other factors, by how the sphere is supported. Flow visualization 
experiments'. * demonstrate that it is possible to obtain axisymmetric conditions in the near wake 
up to moderately high Reynolds numbers of the order of lo4, see for example Figure 1.* In 
addition to this, the discrete vortex method applied to two-dimensional flow about a circular 
cylinder was found to be able to produce results appropriate to the subcritical regime; that is, at 
lower Reynolds numbers than might have been expected from the assumptions on which the 
model is based. The study was undertaken partly with the object of modelling the starting flows 
about spheres, partly to investigate the applicability of the model to the near wake of more fully 
developed flows and partly in the spirit of a numerical experiment aimed at gaining experience in 
the modelling of axisymmetric separated flows. 

2. THE STREAMFUNCTION AND THE VELOCITY 

The wake, being a rotational flow, may be approximated by a distribution of discrete vortices, all 
of which are in fact circular line vortices because of the axisymmetry of the flow. The Stokes 
streamfunction can be defined for each of these and is, in a cylindrical co-ordinate system, given 
by9 
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Figure 1 .  Flow visualization photograph, Wer1e8 

where 

Suppose a sphere of radius R is put within a uniform steady stream of speed U in the positive 
x-direction so that its centre coincides with the origin of the cylindrical co-ordinate system 
(Figure 2) .  If there is an axisymmetric circular line vortex of strength at  a point (t, p )  in the xa- 
plane, an axisymmetric image circular line vortex is required to satisfy the zero-normal-velocity 
boundary condition on the surface of the sphere. The problem of an image within a sphere was 
dealt with by Lewis,” this work being eventually surpassed by Butler’s sphere theorem.” 
According to these works, the image vortex is specified by 

(t2 +P21’ ’2  r, strength: Ti= - 
R 
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U 

Figure 2. Sphere and circular line vortex in a uniform stream 

R 2  
location: <.= 1 __ 5 2 + p 2  5, 

The resulting streamfunction, made up of the free stream about the sphere, N external discrete 
vortices and the same number of image vortices, is expressed by 

where 

ICk=K(X? a; (k,  pk), 

Kik = K ( X ,  a; t i k ,  Pik) .  

The non-dimensional co-ordinates, velocity and time may be defined by 

co-ordinates: x' = x/R and a'= a/R, 

velocity: u'= u/U and u'= o/U, 

time: t'=t/(R/U). 

The velocity components are then expressed in terms of these non-dimensional variables (with the 
primes omitted) by the following: 
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where 

r = ( x 2  +a2) l / ’ ,  (9) 

3. THE SELF-INDUCED VELOCITY 

Unlike the straight line vortex presumed in two-dimensional problems, a mathematically 
idealized line vortex with curvature placed in an ideal fluid acquires a self-convecting velocity in a 
locally binormal direction and of logarithmically infinite magnitude. However, if the vortex has a 
finite core, it also experiences a finite self-induced velocity. It is therefore necessary to model a 
core whose nature will depend on how the diffusive effect of viscosity is accounted for and how the 
vorticity is distributed within it. If the diffusion effect is neglected and the vorticity is assumed to 
be constant within the core, the Kelvin-Lamb formula for a circular line vortex is obtained 

u = 4np r[log($)-a]. 
The core radius can still change with time if the radius of the vortex increases or decreases, 
according to the rule that the volume of vortex core is invariant for an incompressible fluid.9 
Therefore the subsequent self-induced velocity may be expressed by 

The treatment of a diffused core radius can be found in Reference 12 and the logarithmic 
divergence of the self-induced velocity of an idealized line vortex has attracted some research 
interest under the topic of the ‘localized induction concept’. 

4. MODELS OF THE VORTICITY FIELD 

The vorticity in the field is concentrated in the boundary layers and the separated shear layers, 
and it is these areas with which the model is most fundamentally concerned. The question arises 
of how best to model these two elements of the flow using discrete vortices. Two possible 
approaches suggested themselves to the authors. The first was based on the concept of vortex 
sheets discretized as a series of ring vortices. In this model the boundary layer was represented by 
bound vortices whose strength density, which remained fairly constant apart from the area close 
to the separation point, was determined at every time step. The free shear layers were represented 
by discrete vortices introduced at the separation point at each time step and allowed to move with 
the flow. Their velocity was determined by the Biot-Savart law. Three aspects of this model 
require careful consideration. Firstly, it is necessary to determine the separation point. Secondly, 
measures have to be taken to prevent the sheet from becoming tangled and to delay the onset of 
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chaotic motion. Finally, the vortex strengths have to be determined. In this case they were taken 
as being equal to *U,Z, which means that the separation velocity has to be determined. 

At first glance the model appears an attractive one. The role played by each vortex sheet is 
simply related to the actual physical processes it is supposed to model, and the manner of dealing 
with the sheets can be clearly envisaged. Unfortunately the flow pattern predicted by the model is 
implausible; see Figure 3. The front of the shear layer convects downwards for a short while and 
then starts to roll up in a manner that is reminiscent of the starting flow about a two-dimensional 
cylinder. However, the rolled-up vortex sheet is not shed, but becomes increasingly convoluted 
and forms a confused wake, which elongates as time progresses. In fact the model provides no 
mechanism capable of preventing this development from occurring unless some far-fetched 
artifice, such as the imposition of a periodic fluctuation on the shedding rate, is introduced into it 
to enforce convection of the shear layer away from the sphere. Such an artifice was tried and 
found to work, but of course there is no justification for including it in the model. 

In the second model, which is analogous to the two-dimensional vortex cloud method,I4 no 
distinction was made between the boundary layer and the shear layer, and the whole region of 
rotational flow was represented by a vorticity distribution modelled by an array of discrete 
vortices. At each time step the vortices were introduced at points completely surrounding the 
sphere and in close proximity to its surface. They were convected away by the local flow and the 
wake was allowed to evolve with time. The velocity calculations were carried out using the 
vortex-in-cell 

The model has a number of advantages. No assumptions have to be made with regard to the 
location of the separation point; the vortices are simply convected away from the sphere by the 
local flow. However, by the same token, the actual separation point is not well defined and there is 
a mixture of vortex rings of opposite sense in the immediate region of separation. The concept of a 
distribution of vortices, as opposed to vortex sheets, representing the vorticity field obviates the 
problem of sheet entanglement. The problem of the inevitable onset of chaotic motion, common 
to all models of this nature, is greatly delayed and diminished by the use of the vortex-in-cell 
velocity calculations. In the present approach the Biot-Savart law is applied at active nodes on a 
mesh enclosing all the discrete vortex rings in the domain of computation upon which their 
vorticity has been distributed. The technique is computationally more efficient than using the 
Biot-Savart law to calculate the velocity at each vortex ring location and allows the treatment of 
flows containing many more of them before their number becomes prohibitive. This approach 
also has the advantage that it is unnecessary to apply any explicit boundary conditions at the 
outer limit of the mesh. The vortex strengths were simply chosen so as to satisfy in the mean a no- 
slip condition on the surface of the sphere. Finally, the model provides a mechanism similar in 

. . . . . . . 

Figure 3. Predicted flow pattern, first model 
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nature to the ‘artifice’ previously described. Countervorticity generated on the rear face weakens 
the ‘shear layer’ emanating from the region of separation and enables the convection of the 
aggregated vorticity away from the sphere. 

The second model showed some promise with regard to the evolution of the flow and the 
results will be discussed further after a more detailed description of the computation it involves. 

5. METHOD OF COMPUTATION 

The algorithm may be conveniently divided into a number of stages, each of which will be 
described briefly under subheadings of this section. The last seven stages, i.e. 5.5-5.1 1, form the 
basis of the part of the algorithm repeated at each time step of the calculation. 

5.1. Grid formation 

Rectangular polar grids are commonly used for mesh calculations about circular cylinders, and 
one could have been used in the present instance. However, they do have certain drawbacks. The 
cells become larger as the distance from the body increases, for example, although if the fine 
structure of the wake is to be captured in the far field, it requires the same careful treatment as the 
wake close to the body. More importantly, polar grids do not offer the same opportunity for 
taking full advantage of symmetry in constructing the velocity induction coefficient matrix (the 
so-called influence coefficient matrix). For these reasons square grids were used in the present 
computations (Figure 4). They were chosen to cover a sufficiently wide area of the downstream 
wake, the mesh size being 0.1 by 0.1. The choice of mesh was influenced by experience in two- 
dimensional calculations. It was assumed that the axisymmetric flow was analogous to this case 
and that the influence of factors such as ‘numerical viscosity’ would be similar in both instances. 
The mesh always encloses every discrete vortex ring in the flow. 

5.2. Node-to-node influence coejicient matrices 

These matrices are composed of velocity components induced at a nodal point (i, j) by the ring 
vortex of unit strength located at a nodal point (m, n), i.e. Gx(xi, aj; x,, a,) and G,(xi, aj; x,, a,) in 
equations (10a) and (lob) respectively. Since G, and G, are functions of x i - x ,  rather than of x i  

Figure 4. Grids 
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and x, separately, essentially only the following values are needed 

Gx(x i ,  aj;  0, a,,); G,(xi, aj;  0, a,) for i =O,  1 ,  . . . , A!(,+ M,, 
j = O ,  1 , .  . . , N,,  
n = l , 2 , .  . . , N p ,  

except the special case of i = 0 and j = n. (14) 
Note that the case n=O corresponding to a ring vortex of zero radius is excluded. 

The self-induced velocity, being dependent on the strength, the core radius and the radius of a 
vortex, is an intrinsic property of each vortex which cannot be treated by interpolatory 
procedures but must be treated individually. These matrices, therefore, are not associated with the 
self-induced components of velocity. From this consideration it is required that 

G,(O,a,; O,a,)=G,(O,a,; O,a,)=O for n = l ,  2 , .  . . , N,.  (15) 

5.3. Calculation of the invariant factors concerned with the nascent vortices 

The following parameters are determined and stored for repeated use. 

(a) The co-ordinates of the nascent vortices and those of their images. In the present 
calculation the nascent vortices are distributed on a concentric spherical surface of radius 
rnsC with equal angular intervals on a meridian section (Figure 5). 

(b) Identification of the cell in which each of these vortices lies. 
(c) The core radius coefficients. The core radius coefficient is defined as the ratio of the core 

radius with respect to the radius of the vortex. A nascent vortex may be taken to represent 
the vortex strip of width rnscA8 between the midpoints of neighbouring nascent vortices on 
either side, as shown in Figure 6. Let this strip be held as if it were a double layer which may 
be deformed into a circle of the same perimeter, as suggested by Lewis.lS Then the initial 
core radius coefficient is expressed by 

Figure 5. The nascent vortices 
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5.4. Calculation of the influence coe#icient matrix for  the tangential velocity on the surface of the 
sphere 

An element ut(i, j, k) of this matrix is the tangential velocity induced at the control point p k ,  
where the radial line towards the kth nascent vortex intersects the surface of the sphere by the ring 
vortex of unit strength at the grid (i ,  j), as shown in Figure 7. 

5.5. Determination of the strengths of the nascent vortices 

These strengths are determined so that the no-slip condition is satisfied on the surface of the 
sphere. More specifically, if the tangential velocity at the kth control point on the surface of the 
sphere is U t k ,  which is composed of the tangential velocity due to the free stream and that induced 
by the ring vortices on all the nodes, the strength of the kth nascent vortex will be 

with 

Figure 6. The core radius of a nascent vortex 

Figure 7. A control point on the surface of the sphere and a grid with a vortex of unit strength 
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The image vortices corresponding to these nascent vortices are also calculated, as equations (3) 
and (4) show, at this stage. 

5.6. Transfer of the strengths of the nascent vortices and those of their images to the nodes 

vortex-in-cell technique.’. 

5.7. Calculation of the velocity at the nodes of the mesh 

This is carried out according to the bivariate linear redistribution scheme as usual in the 

The velocity components are calculated, by the use of the influence coefficients, from 

a 3 - 2 ~ 2 +  
ui, j=u(x i ,  a j )= 1 + _____ 

2 4  m = - M N  

where 

rij = (xi’ + a:)’’’. (20) 

It is only necessary to calculate the velocity at the ‘active nodes’, i.e. at the nodes of cells occupied 
by discrete vortex rings. 

5.8. The velocity of each of the circular line vortices 

The part of the velocity of a collective nature induced on each vortex may be reproduced from 
the velocity distribution, determined at the grid points at stage 5.7, by the usual technique of 
bivariate four-point interpolation. The self-induced velocity calculated by the use of equation (1 3) 
is added to this part to give the total velocity. 

5.9. The new positions of the vortices 

integration scheme: 
The positions of the discrete vortices are updated at each time step by a simple first-order 

x k ,  new = x k ,  old + uk At, 

new = a k ,  old + vk At. 

(2W 

(2  1 b) 

If desired, the computation can be terminated at this stage. 

5.10. Calculation of the strengths and positions of the image vortices corresponding to this new 
distribution of vortices by the use of equations (3) and (4) 

5.11, Transfer of the strengths of the vortices and those of their images to the relevant nodes of the 
mesh 

The computation is repeated from stage 5.5 again. 

6. COMPUTED RESULTS 

It was found in the case of two-dimensional discrete vortex methods that the wake characteristics, 
and hence the forces experienced by the body, were dependent upon a non-dimensional 
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parameter made up of U ,  At and a length scale characterizing the model ‘boundary layer 
thickness’ at separation a,, and also upon the ratio a,/R. In the present instance a, can be taken as 
proportional to rnsc - R, and the appropriate parameter a,* as (I,,, - R)/UAt .  In the case of two- 
dimensional flow it was found’6. ’’ that provided that a,* lay within a narrow and well-defined 
range, realistic results were obtained for both flow patterns and forces. Furthermore, it was noted 
that when the flow patterns were realistic, the forces were generally well predicted by the models. 

A parametric study was undertaken with the present model to determine values of a,* and a , /R  
which produced flow patterns that resembled flow visualization photographs such as the one 
shown in Figure 1. Thirty-five vortex rings around the sphere were chosen as a standard, since 
this was found to be a sufficient number to satisfy the mean no-slip boundary condition. 
Calculation showed the tangential surface velocity to have an alternating sign of small amplitude. 
The amplitude diminished with increasing number of rings and was considered to be sufficiently 
small with 35 of them. 

The results for a,* =0.4 and a,/R=0.08 are shown in Figure 8. Of the cases investigated, this 
was considered to be the most realistic set of flow patterns. Another set, for comparison, is shown 
in Figure 9, with a,* = 0.8 and a,/R = 0.08. In the two-dimensional case forces are conveniently 
calculated using the Blasius equation, which does not generalize to three dimensions since it is 
couched in terms of the theory of complex variables. For this reason forces and vortex-shedding 
frequencies were not calculated, although in principle the former could be by evaluating the 
pressure on the surface and integrating over the sphere, since the complex potential is known 
everywhere in the flow. Vortex-shedding frequencies are normally evaluated from force traces. 
They could also be estimated from the flow patterns, but this line was not pursued because the 
authors had no access to experimental data with which to compare them. 

7. DISCUSSION OF RESULTS 

It is well known that the wake behind a sphere shows different structures depending on the 
Reynolds number’ and whether or not the flow is fully developed. For starting flows axisym- 
metric conditions exist. For the appropriate Reynolds number range the wake displays fluctuat- 
ing shear layers, i.e. nodes of accumulated vorticity,* although they are neither as characteristic- 
ally displayed nor as persistent as in a two-dimensional problem. Only a few nodes are clearly 
observable in a short distance downstream of the separation point. Beyond this distance the 
axisymmetry itself is not maintained. 

The flow visualization photograph of Figure 1 shows a flow regime in which axisymmetric 
conditions exist in the near wake at a relatively high Reynolds number. The flow patterns shown 
in Figure 8 are qualitatively very similar to the photograph, although axisymmetry is maintained 
much further downstream than occurs for the real flow. It may be seen in the flow patterns that 
the separating shear layer forms circular nodes of concentrated vorticity that are carried 
downstream at regular intervals. The fact that only the second of the two models was able to 
predict such a flow suggests that the generation of countervorticity on the rear face of the sphere 
may well be an important factor in maintaining axisymmetric conditions in real flow$ too. 

It must be emphasized that it is not being claimed that a flow pattern comparable with the 
observed one has been or can be produced, since it would be obviously futile to look for a ‘model 
pattern’ in a real unsteady flow. Why the method tends to produce a result simulating the flow of a 
particular range of Reynolds numbers is an intriguing question to which no clear answer can be 
offered except that it seems to be connected with the intrinsic property of vortices. Probably the 
answer should be sought from the relative importance of convection and velocity induced by 
vortices whose lateral range of distribution depends on the Reynolds number. 



820 D. K. LEE, M. J. DOWNIE A N D  P. BETTESS 

Non-0 Ttre Ins. = 0.20 
Non-0 Grld Strm I 0. 10 

No. of N. V. = 35 
T I M  step 

ltne Stap 

Clro le  Redlue = 1.00 
Non-0 Tim. Int. = 0.20 
Non-0 G l d  Stre = 0.10 
Pad. o f  N. V. I I. 08 
No. o f  ti. v. = A 
T!w Step v 6 0  

+ . . .  

Figure 8. Flow patterns with a: =0.4 and u,/R=0.08 
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Breakdown of symmetry in reality is an aspect of flow which can hardly be coped with by the 
present discrete vortex method. Other three-dimensional versions of the technique, e.g. the vortex 
stick method or the vortex blob method, are under development to deal with a genuine three- 
dimensional problem, but not without sacrifice of the fundamental stipulation of the solenoidal 
property of the vorticity vector. This aspect alone, among others, can restrict the applicability of 
the method to simulate real flows. 

8. CONCLUDING REMARKS 

It has been demonstrated that the present model is viable from a computational point of view. It 
is strictly only applicable to starting flows about spheres, but it may well give interesting insights 
into the underlying mechanisms of other flows. It appears to reproduce some of the characteristics 
of the near wake of a more fully developed flow and suggests that the generation of counter- 
vorticity on the rear face of the sphere may well be an important mechanism for such flows. 
Finally, it could be used with some degree of confidence as the basis of a model for a truly 
axisymmetric flow existing at high Reynolds number. 
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APPENDIX: NOTATION 

r 
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U 
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EO 

CC 

P 
Po 
Uself 

T”SC 

At 

5 

strength of a vortex 
strength of an image vortex 
far free stream velocity 
component of velocity in axial direction 
component of velocity in radial direction 
core radius 
initial core radius 
core radius coefficient 
x-co-ordinate of a circular line vortex 
radius of a circular line vortex 
initial radius of a circular line vortex 
self-induced velocity in x-direction 
radius of the spherical shell on which the nascent 
non-dimensional time step 

vortices are put 
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